

Outline

- ALOR DTO & Related Programs
- Operation & Employment of ALOR
- Current ALOR Program Goals
- ALOR Vehicle Technologies
- ALOR Progress to Date

ALOR DTO

Combines FASM & QuickLook Munitions Development

FASM/QuickLook Leverage Navy & Army Programs

Navy SBIRs
Propulsion, Inflatables
Communications
Video Enhancements

FASM Operation

NSWC

FASM Concept of Employment

April 10, 2001

QuickLook Operation

QuickLook Concept of Employment

appropriate firing unit

Projected Impact on Battle

Battle Damage Assessment

- Debris
- Smoke
- Fire

Projected Impact on Battle

OMFTS

- Survey helicopter approach/ retirement routes
- Survey HLZ
- Suppression in area around HLZ
- Protection during embarkation
- Survey enemy approach routes
- Act as a communication link
- Provide Suppressive Fire
- Provide Protective Fire

- BDA
- Survey approach / retirement Routes
- Act as a communication link
- Provide Suppressive Fire
- Provide Protective Fire

FASM Marine Defense Demonstration Program

The FASM MDD will demonstrate the following basic requirements:

- Ballistic configuration transition to stable cruise flight
- Cruise/Loiter endurance of more than 3 hours
- MIL tactical targeting using live imagery comm link
- Bomb drops with 5-m precision relative to airframe
- Battle damage assessment
- Autonomous flight with in-flight ground control redirect

QuickLook STO Program

The QuickLook STO program will demonstrate the following as basic requirements:

- Transition from ballistic configuration to stable cruise flight.
- Loiter endurance of more than 30 minutes.
- Targeting with under 50-m CEP
- Battle damage assessment using live imagery communications linkage
- Autonomous flight with in-flight ground control redirect

Tech Base

Flight Computer based on Vigilante GNC relies on ERGM, XM982, CMATD

Payload Based on Tomahawk 109-D Dispenser

Propulsion Based on COTS, SBIR & New Engine Systems

Inflatables based on GLOV SBIR

Advanced Composites based on Based On Air Force BDA Camera Unit

Gun Hardened Camera & Transmitter Ground Station and Flight Software Based on Vigilante Autonomous Helicopter

Schedule

Strong Progress Since Program Start

Full Scale, Non-Powered R/C Flight Tests Completed

- Stability and Maneuverability
- "Tail Sizing"
- Characterization complete June-00

Engine Tests

- **COTS** engine characterization complete September-00
- HFE axial engine bench top demo complete December-00

- Successful deployment @ 80 mph
- Wing deploys symmetrically with minimal rebound
- Wing spar pressure: 150 psi

Strong Progress Since Program Start

Parachute Specs

- 13.5 ft diameter
- 90% hemi
- 19.5 fps rate of descent
- 30 lb/ft³ pack density

Rocket Deployed Parachute Recovery System

- Chute housed in payload section
- •Flight Tested in December-00

- Helicopter tow
- •Flight Tested in November-00

Flight Software/Hardware & Ground Station

- R/C flight software/hardware and diagnostics complete December-00
- Executive Flight software architecture defined and coding complete July-01
- Vigilante Ground Station System Mod complete April-01
- Integration of flight computer hardware complete May-01

April 10, 2001

Strong Progress Since Program Start

GN&C

- ·Hardware evaluation to begin in April-01
 - ·Rockwell NavStrike II GPS delivery May-01
 - ·Honeywell RLG consignment delivery March-01
 - •Testing of PC-104 Flight Computer hardware underway
 - •Mod 0 guidance law under development and complete by March-01
 - •Mod 0 autopilot under development and complete by March-01

Full-Scale, Powered R/C Flight Vehicle

- Design Complete (R/C controls, air data & diagnostic sensors, on-board data acquisition, 2.4 GHz transceiver, COTs engine, CCD camera)
- Fabrication completed November-00
- Integration completed December-00
- Ground test completed by January-01
- Initial Flight Test February-01
- Visible sensor Flight Test February-01

Summary

Artillery Launched loitering munitions provide the following features:

- Low cost
- Expendable
- Quickly deployable
- Organic to early entry forces
- Sensor-to-shooter field artillery responsiveness
- Time Critical Strike (FASM, only)

